Try to solve killerSudoku with the principle of exclusion. By examining the block length and the sum of the colored block you can see that there can be only a fixed set of solutions.
In one sum area (one colored block) one number can only appear once! It does not matter, how many sectors (3x3 Fields) it covers.
We prepared the tables with possible combinations of sums by the block length.
|
Tables with possible sums:
with field number: 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9
|
with 2 fields:
sum ( reference number ) : possible solution
03: |
12 |
04: |
13 |
05: |
14 - 23 |
06: |
15 - 24 |
07: |
16 - 25 - 34 |
08: |
17 - 26 - 35 |
09: |
18 - 27 - 36 - 45 |
10: |
19 - 28 - 37 - 46 |
11: |
29 - 38 - 47 - 56 |
12: |
39 - 48 - 57 |
13: |
49 - 58 - 67 |
14: |
59 - 68 |
15: |
69 - 78 |
16: |
79 |
17: |
89 |
sum ( reference number ) : possible solution
06: |
123 |
07: |
124 |
08: |
125 - 134 |
09: |
126 - 135 - 234 |
10: |
127 - 136 - 145 - 235 |
11: |
128 - 137 - 146 - 236 - 245 |
12: |
129 - 138 - 147 - 156 - 237 - 246 - 345 |
13: |
139 - 148 - 157 - 238 - 247 - 256 - 346 |
14: |
149 - 158 - 167 - 239 - 248 - 257 - 347 - 356 |
15: |
159 - 168 - 249 - 258 - 267 - 348 - 357 - 456 |
16: |
169 - 178 - 259 - 268 - 349 - 358 - 367 - 457 |
17: |
179 - 269 - 278 - 359 - 368 - 458 - 467 |
18: |
189 - 279 - 369 - 378 - 459 - 468 - 567 |
19: |
289 - 379 - 469 - 478 - 568 |
20: |
389 - 479 - 569 - 578 |
21: |
489 - 579 - 678 |
22: |
589 - 679 |
23: |
689 |
24: |
789 |
sum ( reference number ) : possible solution
10: |
1234 |
11: |
1235 |
12: |
1236 - 1245 |
13: |
1237 - 1246 - 1345 |
14: |
1238 - 1247 - 1256 - 1346 - 2345 |
15: |
1239 - 1248 - 1257 - 1347 - 1356 - 2346 |
16: |
1249 - 1258 - 1267 - 1348 - 1357 - 1456 - 2347 - 2356 |
17: |
1259 - 1268 - 1349 - 1358 - 1367 - 1457 - 2348 - 2357 - 2456 |
18: |
1269 - 1278 - 1359 - 1368 - 1458 - 1467 - 2349 - 2358 - 2367 - 2457 - 3456 |
19: |
1279 - 1369 - 1378 - 1459 - 1468 - 1567 - 2359 - 2368 - 2458 - 2467 - 3457 |
20: |
1289 - 1379 - 1469 - 1478 - 1568 - 2369 - 2378 - 2459 - 2468 - 2567 - 3458 - 3467 |
21: |
1389 - 1479 - 1569 - 1578 - 2379 - 2469 - 2478 - 2568 - 3459 - 3468 - 3567 |
22: |
1489 - 1579 - 1678 - 2389 - 2479 - 2569 - 2578 - 3469 - 3478 - 3568 - 4567 |
23: |
1589 - 1679 - 2489 - 2579 - 2678 - 3479 - 3569 - 3578 - 4568 |
24: |
1689 - 2589 - 2679 - 3489 - 3579 - 3678 - 4569 - 4578 |
25: |
1789 - 2689 - 3589 - 3679 - 4579 - 4678 |
26: |
2789 - 3689 - 4589 - 4679 - 5678 |
27: |
3789 - 4689 - 5679 |
28: |
4789 - 5689 |
29: |
5789 |
30: |
6789 |
sum ( reference number ) : possible solution
15: |
12345 |
16: |
12346 |
17: |
12347 - 12356 |
18: |
12348 - 12357 - 12456 |
19: |
12349 - 12358 - 12367 - 12457 - 13456 |
20: |
12359 - 12368 - 12458 - 12467 - 13457 - 23456 |
21: |
12369 - 12378 - 12459 - 12468 - 12567 - 13458 - 13467 - 23457 |
22: |
12379 - 12469 - 12478 - 12568 - 13459 - 13468 - 13567 - 23458 - 23467 |
23: |
12389 - 12479 - 12569 - 12578 - 13469 - 13478 - 13568 - 14567 - 23459 - 23468 - 23567 |
24: |
12489 - 12579 - 12678 - 13479 - 13569 - 13578 - 14568 - 23469 - 23478 - 23568 - 24567 |
25: |
12589 - 12679 - 13489 - 13579 - 13678 - 14569 - 14578 - 23479 - 23569 - 23578 - 24568 - 34567 |
26: |
12689 - 13589 - 13679 - 14579 - 14678 - 23489 - 23579 - 23678 - 24569 - 24578 - 34568 |
27: |
12789 - 13689 - 14589 - 14679 - 15678 - 23589 - 23679 - 24579 - 24678 - 34569 - 34578 |
28: |
13789 - 14689 - 15679 - 23689 - 24589 - 24679 - 25678 - 34579 - 34678 |
29: |
14789 - 15689 - 23789 - 24689 - 25679 - 34589 - 34679 - 35678 |
30: |
15789 - 24789 - 25689 - 34689 - 35679 - 45678 |
31: |
16789 - 25789 - 34789 - 35689 - 45679 |
32: |
26789 - 35789 - 45689 |
33: |
36789 - 45789 |
34: |
46789 |
35: |
56789 |
sum ( reference number ) : possible solution
21: |
123456 |
22: |
123457 |
23: |
123458 - 123467 |
24: |
123459 - 123468 - 123567 |
25: |
123469 - 123478 - 123568 - 124567 |
26: |
123479 - 123569 - 123578 - 124568 - 134567 |
27: |
123489 - 123579 - 123678 - 124569 - 124578 - 134568 - 234567 |
28: |
123589 - 123679 - 124579 - 124678 - 134569 - 134578 - 234568 |
29: |
123689 - 124589 - 124679 - 125678 - 134579 - 134678 - 234569 - 234578 |
30: |
123789 - 124689 - 125679 - 134589 - 134679 - 135678 - 234579 - 234678 |
31: |
124789 - 125689 - 134689 - 135679 - 145678 - 234589 - 234679 - 235678 |
32: |
125789 - 134789 - 135689 - 145679 - 234689 - 235679 - 245678 |
33: |
126789 - 135789 - 145689 - 234789 - 235689 - 245679 - 345678 |
34: |
136789 - 145789 - 235789 - 245689 - 345679 |
35: |
146789 - 236789 - 245789 - 345689 |
36: |
156789 - 246789 - 345789 |
37: |
256789 - 346789 |
38: |
356789 |
39: |
456789 |
sum ( reference number ) : possible solution
28: |
1234567 |
29: |
1234568 |
30: |
1234569 - 1234578 |
31: |
1234579 - 1234678 |
32: |
1234589 - 1234679 - 1235678 |
33: |
1234689 - 1235679 - 1245678 |
34: |
1234789 - 1235689 - 1245679 - 1345678 |
35: |
1235789 - 1245689 - 1345679 - 2345678 |
36: |
1236789 - 1245789 - 1345689 - 2345679 |
37: |
1246789 - 1345789 - 2345689 |
38: |
1256789 - 1346789 - 2345789 |
39: |
1356789 - 2346789 |
40: |
1456789 - 2356789 |
41: |
2456789 |
42: |
3456789 |
sum ( reference number ) : possible solution
36: |
12345678 |
37: |
12345679 |
38: |
12345689 |
39: |
12345789 |
40: |
12346789 |
41: |
12356789 |
42: |
12456789 |
43: |
13456789 |
44: |
23456789 |
sum ( reference number ) : possible solution
|